ISOMER AND BETA-DECAY STUDIES OF NUCLEI NEAR ⁷⁸Ni C. Mazzocchi^{a)}, R. Grzywacz^{a)}, J. Batchelder^{b)}, C. Bingham^{a,g)}, D. Fong^{c)}, J.H. Hamilton^{c,g)}, J.K. Hwang^{c)}, M. Karny^{d)}, W. Królas^{c,e)}, S. Liddick^{f)}, C. Morton^{f)}, P. Mantica^{f)}, W. Mueller^{f)}, K. Rykaczewski^{g)}, M. Steiner^{f)}, A. Stolz^{f)}, J. Winger^{h)} a) Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA b) Oak Ridge Associated Universities, Oak Ridge, TN-37831, USA c) Department of Physics, Vanderbilt University, Nashville, TN-37235, USA d) Institute of Experimental Physics, Warsaw University, Warsaw, PL-00681, Poland e) Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN-37831. USA f) National Superconduction Cyclotron Laboratory, Michigan State University, East Lansing, MI-48824, USA g) Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA h) Department of Physics, Mississippi State University, Mississippi State, MS-39762, USA Research on neutron rich nuclei near the doubly magic ⁷⁸Ni has attracted considerable interest in recent years. According to theoretical predictions, large neutron excesses in the nuclear system can affect the nucleon-nucleon interaction and result in changes to the traditional shell gaps and magic numbers. Moreover, these nuclei play an important role in r-process nucleosynthesis. Several experiemental and theoretical studies have therefore been carried out in this region [1-4]. New experimental results will be reported. The current experiment involved the study of isomeric states and β decay of isotopes close to ⁷⁸Ni. The nuclei of interest were produced in the fragmentation of 140 A·MeV ⁸⁶Kr in a ⁹Be target. The reaction products were separated according to their mass-to-charge ratio and nuclear charge using the A1900 spectrometer at the NSCL and implanted into a double-sided silicon strip detector to detect both heavy ions and their subsequent β -decay. The implantation detector was surrounded by an array of geramnium detectors used to detect and identify both prompt and β -dealyed γ -rays. Decay data were obtained for several isotopes. The cases of ^{76m}Ni and ⁷¹⁻⁷⁴Co, in particular, will be discussed in comparison with theoretical predictions. This work was supported in part by the NSF Grant PHY-01-10253 and by the DOE Grant DE-FG02-96ER40983. - [1] H. Grawe, Nucl. Phys. A**704**, 211c (2002). - [2] R. Grzywacz et al., Phys. Rev. Lett. 81, 766 (1998). - [3] M. Sawicka et al, Phys. Rev. C 68, 044304 (2003). - [4] A.F. Lisetskiy et al., http://xxx.lanl.gov/pdf/nucl-th/0402082, submitted to Phys. Rev. Lett.